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Hilbert spaces of scalar functions with reproducing kernels were introduced and studied in [2].
Due to their crucial role in designing kernel-based learning methods successfully applied in sev-
eral machine learning applications, these spaces have received considerable attention over the last
two decades [14]. More recently, interest has grown in exploring Hilbert spaces of vector random
functions for learning vector-valued functions [9, 4], even though the idea of extending Reproduc-
ing Kernel Hilbert Spaces (RKHS) theory from scalar to vector-valued functions is not new and
dates back at least to [15]. In [5] Hilbert spaces of vector-valued functions [9] are described and
matrix-valued reproducing kernels [8] are constructed to learn many related regression or classifica-
tion tasks simultaneously [1]. Similarly, there are also some works where approaches based on this
framework have been proposed to estimate a two or three-dimensional vector-valued function [6].
In this work, we propose to address the general case where the output space is a space of vectors
with large dimension, even infinite. In this latter case, the output space is a space of functions and
data which belong to that space are usually called functional data, so we focus here on extending
RKHS theory from vector to functional data. More precisely, we focus on reproducing kernel Hilbert
spaces whose elements are function-valued functions and we demonstrate how basic properties of
real RKHS can be restated in the functional case. The framework developed is valid for any type of
input data (vector or function). However, we are interested is the case where both input and output
data are functions. In this setting, we consider the problem of estimating a function f such that
,,,,, » are assumed to be elements of infinite dimensional
Hilbert spaces. In the following we denote by G, and G, the domains of x; and y; respectively.
X ={x1,...,x,} denotes the training set with corresponding targets Y = {y1, ..., y,}. Since G,
and G, are spaces of functions, the problem can be thought of as an operator estimation problem,
where the desired operator maps a Hilbert space of factors to a Hilbert space of targets. We can
define the regularized operator estimate of f € F
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In the first part of this work, we provide a solution to this minimization problem in a reproducing
kernel Hilbert space F of function-valued functions on some infinite-dimensional input space G,..
We start by introducing function-valued reproducing kernel Hilbert spaces and their correspondence
to positive operator-valued kernels. Then we discuss the construction of operator-valued kernels.
These kernels which take two functions in G, as arguments and output an operator in £(G y), where

L(G y) is the set of bounded linear operators from G, to G, can be built as follows. First one can
attempt to build an operator T" € L(G y) from a function h € G, [3]. We call h the characteristic

function of the operator T" [13]. In this first step, we are building a function f : G, — L£(G y)
The second step can be performed in one of two ways. Either we build A from a combination of
two functions hy and hs in H, or we combine two operators created in the first step using the two
characteristic functions h; and he. The second way is more difficult because it requires the use
of a function which operates on operator variables. To build an operator-valued kernel and then
constructing a function-valued reproducing kernel Hilbert space, the operator 7" is of paramount
importance. Choosing 1" presents two major difficulties. Computing the adjoint operator is not
always easy to do, and then, not all operators verify the Hermitian condition of the kernel. The
kernel must be nonnegative, this property is given according to the choice of the function h. Finally,
we provide examples of operator-valued kernels and we show their use for solving the minimal norm
interpolation problem of function-valued functions within the RKHS framework developed.

The second part of this work is devoted to describe some applications where the framework de-
veloped for learning function-valued functions can be of practical interest. Observing and saving
complete functions as a result of random experiments is nowadays possible by the development of
real-time measurement instruments and data storage resources. Functional data arise in a number
of scientific fields associated with continuous-time processes whose final outputs are samples of
(discretized) functions. It is true that the measurement process itself very often provides a vector
rather than a function, but the vector is really a discretization of a real attribute, which is a func-
tion. Furthermore, if the discretization step is small, the vectors may become very large. We think
that handling these data as what they really are, that is functions, is an interesting path to investi-
gate. Methods working with discretized data more or less ignore their functional character, and thus
extending learning methods from multivariate to functional data could lead to further progress in
several practical problems of machine learning and applied statistics.

Typical areas of research where one has to deal with functional data are meteorology, physiology
and speech processing. A class of problems in these fields which illustrate the potential of adopting
a function-valued RKHS approach is functional regression [12] when data attributes as responses
are functions. In this setting, an example is a couple (x;(s), y;(¢)) in which both x;(s), and y;(t)
are real functions, that is x;(s) € G, and y;(t) € G, where G, and G, are real Hilbert spaces.
We notice that s and ¢ can belong to different sets. This setting naturally appears when we wish to
predict the evolution of a certain quantity in relation to some other quantities measured along time.
Most previous works on this problem suppose that the relation between functional responses and
predictors is linear. In this case, the functional regression model is an extension of the multivariate

linear regression model

y(t) = alt) + B(t)z(t) + €(t)
for a regression parameter function 3. In this model, known as the concurrent model, the response y
and the covariate z are both functions of the same argument ¢, and the influence of a covariate on the
response is concurrent or point-wise in the sense that z only influences y(t) through its value ()
at time ¢ (see chapter 14 of [12]). An extended linear model in which the influence of a covariate x
can involve a range of argument values x(s) takes the form (see chapter 16 of [12])

y(t) = alt) + /x(s)ﬂ(&t)ds + €(t)

In this setting, an extension to nonlinear contexts can be achieved using Hilbert spaces of function-
valued functions and functional reproducing kernels [7]. We discuss examples, related to the fields
mentioned above, where we feel there is practical need for this extension. In meteorology, there
is a continuing interest in analyzing and understanding relationships between climate data. A first
example deals with weather data. For 35 weather stations of Canada, the daily temperature and
precipitation were averaged over a period of 30 years. The goal is to predict the complete log
daily precipitation profile of a weather station from information on the complete daily temperature
curves [12]. The second example consists in studying the dependence of the acceleration of the



lower lip in speech on neural activity, as measured by electromyographical (EMG) recording. This
kind of study is of particular relevance for physiologists who aim to understand how the brain con-
trols movement. Input-output data consist in 32 records of the movement of the center of the lower
lip when a subject was repeatedly required to say the syllable “bob”, embedded in the phrase, “Say
bob again” and the corresponding EMG activities of the primary muscle depressing the lower lip,
the depressor labii inferior (DLI) [11]. The goal is to predict lip acceleration from EMG activities.
As third and a final example we consider the problem of learning the acoustic-to-articulatory map-
ping, also known as speech inversion [10, 16]. It is a speech processing related problem that has
attracted the attention of several researchers. The goal is to investigate ways to exploit articulatory
informations, which are described by electromagnetic articulography (EMG) trajectories or vocal
tract time functions, to improve both speech technology and understanding. A successful solution
could find numerous applications, such as helping individuals with speech and hearing disorders and
improving speech recognition systems.
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